
Reactive
programming

in JavaScript with Reactjs

JFokus 3. february 2015

Forget about…

Established truths

Everything you thought you knew
about making web apps

Relax

It’s going to be okay

Hello, I’m Sven

I am a frontend developer from
Inmeta Consulting in Norway

The Problem
How can we build large apps with data

that changes over time?

But: local state that changes over time
is the root of all evil

ModelViewController
The MVC pattern was developed in

1979

It was deviced as a general solution
to the problem of users controlling a

large and complex data set.

It’s not 1979 anymore…

The MVC problem
Thin views / templates

Models and controllers that grows…

…and grows

until most of your time is spent
keeping them in sync

We need a better model

React

A JavaScript library for building
composable user interfaces

React gives you
A lightweight virtual DOM

Powerful views without templates

Unidirectional data flow

Explicit mutation

A React app consists of

Reusable components

Components makes code reuse, testing,
and separation of concerns easy.

Not just the V
In the beginning, React was presented

as the V in MVC.

This is at best a huge simplification.

React has state, it handles mapping
from input to state changes, and it

renders components. In this sense, it
does everything that an MVC does.

<NewsFeed>

<NewsItem>

<ItemComments>

<ItemTitle>

<ItemCover>

NewsItem.jsx

NewsItem.jsx

NewsItem.jsx

NewsItem.jsx

JSX

A JavaScript XML based extension
that makes it easy to mix HTML with

JavaScript

Component Life Cycle

Initial
render Get Initial State

Component Will Mount

Render

Component Did Mount

Get Default Props

Called immediately after
render

Set initial value of
this.state

Set initial value of
this.props

Return JSX for component
Never update state here

Calling setState here does
not cause a re-‐render

Component Life Cycle

Component will receive props

Should component update

Component will update

Render

Component did update

-‐ Takes nextprops as input
-‐ Previous props available
as this.props
-‐ Calling setState() here does
not trigger re-‐render

Can abort render if you
return false here. If false,
componentWillUpdate and
componentDidUpdate will not
be called.
nextProps, nextState available
here
Cannot use setState() here

Called immediately after
render

NOT called for
initial render

PROPS
Change

Component Life Cycle

Should component update

Component will update

Render

Component did update

Can abort render if you
return false here. If false,
componentWillUpdate and
componentDidUpdate will not
be called.

nextProps, nextState available
here
Cannot use setState() here

Called immediately after
render

NOT called for
initial render

STATE
Change

Component Life Cycle

These methods do not have access to the component’s props or state

Statics
The statics object allows you to define static methods
that can be invoked on the component without creating instances

Component Life Cycle

Component will unmount
Invoked immediately before
component is unmounted.
For cleanup, invalidating
timers etc.

Unmount

Virtual DOM
Render
the DOM

Build a new
Virtual DOM

Compute the minimal
sets of mutation and queue

Diff with
old DOM

Batch execute
all updates EACH UPDATE

State Props
For interactivity
in the component.
Mutable data

For data passed
to the component
Should be treated as

immutable.

State
Is updated by calling setState()

Every call to setState() triggers a re-‐render

(except when called within
componentDidMount)

Only the changes
are rendered

Everything is
re-‐rendered

React jQuery

Server Rendering

Traditional JavaScript applications
are hard to render on the server. This
makes the app uncrawlable, and you

miss out on SEO.

Server Rendering
Fortunately, React can handle this

with ease.

All you need to do is call
renderToString instead of render

and you’ve got a SEO ready
component.

Server Rendering
Another option is to call

renderToStaticMarkup.

This is similar to renderToString,
except this doesn't create extra DOM

attributes such as data-react-id which
is useful if you want to use React as a

simple static page generator.

Testing

JEST

Built on top of the Jasmine test
framework, using familiar

expect(value).toBe(other) assertions

JEST

Automatically finds tests to execute in
your repo

JEST

Automatically mocks dependencies
for you when running your tests

JEST

Allows you to test asynchronous code
synchronously

JEST

Runs your tests with a fake DOM
implementation (via jsdom) so that
your tests can run on the command

line

JEST

In short, if you want to test React
code, use JEST.

Practical example
Unclicked State Clicked State

Routing
React does not have a native router

There are however a few to choose
between

React-router 
React-router-component 

Monorouter

React-‐router example

Inline Styles

So inline styles, eh?

There’s actually a good reason for
doing this.

So inline styles, eh?

CSS pollutes the global namespace

At scale, this is bad because it leads to
paralysis and confusion.

Can I add this element, or change this
class? If you’re not sure, you’re in

trouble.

So inline styles, eh?

Inline styles avoid this, because the
CSS is scoped to the component you’re

working with.

How it looks

Not your 80s inline
It's not really "inline". We merely pass a reference
to a rule that’s somewhere else in the file, just like

CSS.

Style is actually a much better name than class.
You want to “style” the element, not “class” it.

Finally, this is not applying the style directly, this
is using React virtual DOM and is being diff-ed the

same way elements are.

Still….

The goal is not to replace CSS as it’s done today.
It’s simply focusing on the fundamental problem

with CSS and trying to solve it.

You do not have to use it. If you apply a className
tag to your elements, you can use CSS as you’ve

always done.

Mixins

Basically, pure React components that
can be incorporated in your other

components

Mixins

Components that use mixins inherits
state and props from the mixin

Mixins

Last words

Virtual DOM, a native event system
and other technicalities are nice

But Reacts true strength are actually
none of these

Last words
Reacts true strengths are:

Unidirectional Data Flow

Freedom from Domain Specific
Language (it’s all JavaScript)

Explicit Mutation

Questions?
Source Code available at

github.com/svenanders/react-‐tutorial

http://learnreact.robbestad.com

http://github.com/svenanders/react-tutorial
http://learnreact.robbestad.com

